ПAMIBIA UПIVERSITY

 OF SCIEПCE AПD TECHПOLOGY
FACULTY OF MANAGEMENT SCIENCES

DEPARTMENT OF ACCOUNTING, ECONOMICS AND FINANCE

QUALIFICATION: BACHELOR OF ECONOMICS	
QUALIFICATION CODE: O7BECO	LEVEL: 8
COURSE CODE: AMI810S	COURSE NAME: ADVANCED MICROECONOMICS
SESSION: JUNE 2022	PAPER: THEORY
DURATION: 3 HOURS	MARKS: 100

	FIRST OPPORTUNITY EXAMINATION QUESTION PAPER
EXAMINER(S)	MR. PINEHAS NANGULA
MODERATOR:	Dr Ernest Ngeh Tingum

INSTRUCTIONS
1. Answer ALL the questions.
2. Write clearly and neatly.
3. Number the answers clearly.

PERMISSIBLE MATERIALS

1. Scientific calculator
2. Pen and Pencil
3. Ruler

QUESTION ONE

A bicycle manufacturing company is considering how to allocate a $\mathrm{N} \$ 15$ million advertising budget between two types of tournaments: NPL football game and Namibian newspaper game. The following table shows the new bicycle that are sold when a given amount of money is spent on advertising during an NPL football game and a Namibian newspaper game. Let P be the amount of money devoted to advertising on NPL football games, T the amount of money spent on advertising on Namibian newspaper game, and $C(P, T)$ the number of new bicycle sold.

Total spent (Millions)	New sales from NPL football game	New sales from Namibian newspaper game	Total Sales
N\$0.00	0	0	
N\$3.00	4	15	
N\$6.00	11	21	
N\$9.00	16	27	
N\$12.00	26	31	
N\$15.00	31	34	

i) What is the objective function for this problem?
ii) What is the constraint?
iii) Write a statement of the constrained optimization problem.
iv) Calculate total sales associated with each spending on NPL football games and Namibian newspaper game.
v) Considering the information in the table, how should the manufacturer allocate its advertising budget?
b) The demand function for beef is $P=100-0.5 Q$ and the supply function for beef is $P=90$ $+0.5 Q^{2}$. Use integration to calculate consumer's surplus and producer's surplus. [10 marks]

You have a choice to make between clothing (C) and food (F), the price of cloth is $N \$ 45.00$ per cloth and the price of food is $\mathrm{N} \$ 30.00$ per kg. Your utility function is $U(F, C)=20 \sqrt{F C}$ and your income is $\mathrm{N} \$ 30000.00$.
a) If the price of food increases from $\mathrm{N} \$ 30.00$ to $\mathrm{N} \$ 40.00$ while the price of cloth and income remain the same, construct demand curve for food. Use a clear labelled graph to present your answer. Let food be on the x -axis.
[12.5 marks]
b) If the price of cloth increases from $\mathrm{N} \$ 45$ to $\mathrm{N} \$ 55.00$ while the price of food and income of consumer remain the same $\mathrm{N} \$ 30$ and $\mathrm{N} \$ 30000.00$ respectively, construct demand curve for cloth. Use a clear labelled graph to present your answer. Let food be on the x -axis.
[12.5 marks]

QUESTION THREE

[25 MARKS]

A homogeneous products duopoly faces a market demand function given by $\mathrm{Q}=50-0.2 \mathrm{P}$. Firm A marginal cost is $\mathrm{N} \$ 15.00$ and firm B marginal cost is $\mathrm{N} \$ 15.00$.
a)
i. What is Firm A's profit-maximizing quantity, given that Firm B produces an output of 45 units per year?
ii. What is Firm A's profit-maximizing quantity when Firm B produces 40 units per year?
b) Derive the equation of each firm's reaction curve and then graph these curves.
c) What is the Cournot equilibrium price and quantity per firm in this market?
d) What would be the equilibrium price in this market if it were perfectly competitive?
[5 marks]
e) What would be the equilibrium price in this market if the two firms colluded to set a monopoly price?

Consumers derived utility from consuming good x and good y. Utility function is $U X, Y)=$ $20 X^{0.4} Y^{0.4} \operatorname{good} y$ is a composite good ($\mathrm{P}_{\mathrm{y}}=\mathrm{N} \$ 1$), the price of $\operatorname{good} \mathrm{x}$ is $\left(\mathrm{P}_{\mathrm{x}}=\mathrm{N} \$ 10.00\right)$ and consumer income is ($1=N \$ 500$). Government would like to increase the consumption of good x with 60 per cent. Government can achieve this objective by either giving cash subsidy or a voucher that can only be used in the purchasing of good x . Government can only spend $\mathrm{N} \$ 300.00$.
a) Use a well labelled graph to represent the above information.
b) Calculate optimal combination of good x and good y associated with each option. Which option will you recommend and why?
c) If government has only $\mathrm{N} \$ 200.00$ to spend to increase the consumption of good x , which option will you recommend?

